Moment-based approach to the flux-tube linear gyrokinetic model

Author:

Frei B.J.ORCID,Hoffmann A.C.D.ORCID,Ricci P.ORCID,Brunner S.ORCID,Tecchioll Z.

Abstract

This work reports on the development and numerical implementation of the linear electromagnetic gyrokinetic (GK) model in a tokamak flux-tube geometry using a moment approach based on the expansion of the perturbed distribution function on a velocity-space Hermite–Laguerre polynomials basis. A hierarchy of equations of the expansion coefficients, referred to as the gyro-moments (GMs), is derived. We verify the numerical implementation of the GM hierarchy in the collisionless limit by performing a comparison with the continuum GK code GENE, recovering the linear properties of the ion temperature gradient, trapped electron, kinetic ballooning and microtearing modes, as well as the collisionless damping of zonal flows. An analysis of the distribution functions and ballooning eigenmode structures is performed. The present investigation reveals the ability of the GM approach to describe fine velocity-space-scale structures appearing near the trapped and passing boundary and kinetic effects associated with parallel and perpendicular particle drifts. In addition, the effects of collisions are studied using advanced collision operators, including the GK Coulomb collision operator. The main findings are that the number of GMs necessary for convergence decreases with plasma collisionality and is lower for pressure gradient-driven modes, such as in H-mode pedestal regions, compared with instabilities driven by trapped particles and magnetic gradient drifts often found in the core. The accuracy of approximations often used to model collisions (relative to the GK Coulomb operator) is studied in the case of trapped electron modes, showing differences between collision operator models that increase with collisionality and electron temperature gradient, consistent with the results of Pan et al. (Phys. Rev. E, vol. 103, 2021, L051202). Such differences are not observed in other edge microinstabilities, such as microtearing modes. The importance of a proper collision operator model is also confirmed by analysing the collisional damping of geodesic acoustic modes and zonal flows.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

EUROfusion

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3