Beyond analytic approximations with machine learning inference of plasma parameters and confidence intervals

Author:

Marchand RichardORCID,Shahsavani SadafORCID,Sanchez-Arriaga GonzaloORCID

Abstract

Machine learning techniques are used to construct models capable of inferring plasma state variables from non-emissive (LP) and emissive (EP) cylindrical Langmuir probes under conditions in which standard analytic theories are not applicable. Synthetic data sets, consisting of plasma parameters and probe characteristics computed kinetically in the orbital motion theory framework, are used to train and test regression models to infer electron densities, temperatures, and plasma potentials. Model skill metrics are introduced to determine uncertainty margins on inferred parameters, when models are applied to test sets not involved in the model optimization process. The different scalings and transformations required to obtain optimal accuracy are described in each case considered for both LPs and EPs. Excellent inferences are made for all three parameters considered from LP characteristics, but owing to the strong dependence on the plasma potential, and weak dependences on electron temperature and density with EPs, only plasma potential inferences are reported with acceptable accuracy for this type of probe. Our findings demonstrate that the combination of kinetic simulations and machine learning techniques is a promising and practical way to infer plasma parameters efficiently from cylindrical probes, under conditions beyond, and more general than those under which commonly used analytic approximations are valid.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3