Beam current from downramp injection in electron-driven plasma wakefields

Author:

Hue CélineORCID,Golovanov AntonORCID,Tata Sheroy,Corde SébastienORCID,Malka VictorORCID

Abstract

We study the stability of plasma wake wave and the properties of density-downramp injection in an electron-driven plasma accelerator. In this accelerator type, a short high-current electron bunch (generated by a conventional accelerator or a laser–wakefield acceleration stage) drives a strongly nonlinear plasma wake wave (blowout), and accelerated electrons are injected into it using a sharp density transition which leads to the elongation of the wake. The accelerating structure remains highly stable until the moment some electrons of the driver reach almost zero energy, which corresponds to the best interaction length for optimal driver-to-plasma energy transfer efficiency. For a particular driver, this efficiency can be optimised by choosing appropriate plasma density. Studying the dependence of the current of the injected bunch on driver and plasma parameters, we show that it does not depend on the density downramp length as long as the condition for trapping is satisfied. Most importantly, we find that the current of the injected bunch primarily depends on just one parameter which combines both the properties of the driver (its current and duration) and the plasma density.

Funder

HORIZON EUROPE European Innovation Council

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3