Large amplitude ion-acoustic double layers in warm dusty plasma

Author:

Jain S. L.,Tiwari R. S.,Mishra M. K.

Abstract

Large amplitude ion-acoustic double layer (IADL) is studied using Sagdeev's pseudo-potential technique in collisionless unmagnetized plasma comprising hot and cold Maxwellian population of electrons, warm adiabatic ions, and dust grains. Variation of both Mach number (M) and amplitude |φm| of large amplitude IADL with charge, concentration, and mass of heavily charged massive dust grains is investigated for both positive and negative dust in plasma. Our numerical analysis shows that system supports only rarefactive large amplitude IADL for the selected set of plasma parameters. Our investigations for both negative and positive dust grains reveal that ion temperature increases the mobility of ions, resulting in increase in the Mach number of IADL. The larger mobility of ions causes leakage of ions from localized region, resulting into decrease in the amplitude of IADL. Other parameters, e.g. temperature ratio of hot to cold electrons, charge, concentration, mass of heavily charged massive dust grains also play significant role in the properties and existence of double layers. Since it is well established that both positive and negative dust are found in space as well as laboratory plasma, and double layers have a tremendous role to play in astrophysics, we have included both positive and negative dust in our numerical analysis for the study of large amplitude IADL. Further data used for negative dust are close to experimentally observed data. Hence, it is anticipated that our parametric studies for heavily charged (both positive and negative) dust may be useful in understanding laboratory plasma experiments, identifying nonlinear structures in upper part of ionosphere and lower part of magnetosphere structures, and in theoretical research for the study of properties of nonlinear structures.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3