Kinetic theory of cross-modulation in a weakly ionized plasma

Author:

Garrett A. J. M.

Abstract

Cross-modulation in plasma is an electromagnetic wave interaction in which the modulation of one ‘disturbing’ wave is imposed nonlinearly on the transport properties of the medium, and thence onto a second, ‘wanted’ wave propagating linearly through it. This analysis is restricted to weakly ionized plasma with allowance for ambient magnetic field, as in the lower ionosphere. A kinetic description is used, based on the Boltzmann equation for the electrons, with electron-molecule collisions described by Boltzmann's collision integral. Because of the small mass ratio this simplifies to a differential form. The perturbation of the electron velocity distribution functionf(v, t) due to the disturbing wave is calculated up to terms quadratic in wave amplitude, which are the lowest order to show the effect. The part of the term quadratic in wave amplitude at zero times the fundamental frequency, and isotropic in velocity space, which represents the perturbation in electron energy distributions, is selectively enhanced by an inverse factor of mass ratio, since the excess energy imparted by the wave to the electrons is transferred collisionally to the molecules at a rate inversely proportional to mass ratio. Modulation of the wave induces modulation of the electron energy distribution. A more general expansion scheme, in velocity-space spherical harmonics, is also presented. To calculate the dispersion relation for the second, ‘wanted’ wave, the linear part of the disturbing wave analysis is adapted, and the amplitude of the wanted wave is given in the WKB approximation as a phase integral of the refractive index along the ray path; this contains moments of the electron energy distribution and is modulated. The predictions of older semi-empirical theories, that the effect is enhanced when the fundamental frequency of the disturbing wave is close to the electron gyrofrequency, and that the second harmonic of the modulation is also imposed on the wanted wave, are confirmed. The wanted wave is predominantly amplitude-modulated, and only amplitude modulation of the disturbing wave is picked up; phase modulation is not transferred. There is no cross-modulation if the collision frequency is independent of collision speed, when contributions from all parts of velocity space cancel.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3