Scattering of radio frequency waves by cylindrical filaments with general orientation relative to the magnetic field

Author:

Valvis S. I.,Ram A. K.,Hizanidis K.,Papagiannis P.,Papadopoulos A.,Zisis A.,Tigelis I. G.,Glytsis E.

Abstract

Radio frequency (RF) waves are routinely used in tokamak fusion plasmas for plasma heating, current control, as well as in diagnostics. These waves are excited by antenna structures placed near the tokamak’s wall and they have to propagate through a turbulent layer known as the scrape-off layer, before reaching the core plasma (which is their target). This layer exhibits coherent density fluctuations in the form of filaments and blobs. The scattering processes of RF plane waves by a single filament is studied with the assumption that the filament has a cylindrical shape and infinite length. Furthermore, besides the major toroidal component of the externally imposed magnetic field, there is also a small poloidal magnetic field component. Considering also that the cylindrical filament’s axis is not necessarily aligned with the toroidal direction, the total magnetic field is in general neither aligned with the axis of the cylinder nor with the toroidal direction. The investigation concerns the case of electron cyclotron (EC) waves (of frequency $f_{0}=170~\text{GHz}$) for tokamak applications. The study covers a variety of density contrasts between the filament and the ambient plasma, different magnetic field inclinations with respect to the cylinder axis (for the same magnitude of magnetic induction $B=4.5T$) and a wide range of filament radii.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3