Thermodynamics of Vlasov equilibria

Author:

Minardi E.

Abstract

This paper contains a systematic exposition of a statistical method leading to a characterization of relevant equilibrium and stability properties of col-lisionless Vlasov (collective) plasma configurations according to a formalism similar to that of the classical thermodynamics of Maxwellian systems. We reconsider a statistical model, proposed in earlier works, in which the basic objects of the statistics are volume elements in a configuration space of the charge or current density. The probability distribution in this space is calculated subject to a constraint expressing the existence of static equilibria involving only the smeared-out or collective part of the above densities, while the collective energy is uncorrelated with the fluctuations arising from the single-particle structure. It is one of the aims of this paper to show that the thermodynamic quantities arising automatically in the formalism, for instance the entropy, can be consistently inserted in the physical and conceptual context of classical thermodynamics. This is achieved by studying in detail a reversible energy interaction between the collective system and the external world, in order to identify the entropy variations calculated with the model with those of the entropy as conventionally defined. Our thermodynamic concepts are illustrated by applications to electrostatic Vlasov equilibria (in unstable situations and in the Maxwellian limit) and to magnetic systems, both in a case open to energy interaction with the external world (the tokamak) and in the case of an isolated system (a plasma enclosed in a perfectly conducting shell).

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3