Machine-learning-based models in particle-in-cell codes for advanced physics extensions

Author:

Badiali ChiaraORCID,Bilbao Pablo J.ORCID,Cruz FábioORCID,Silva Luís O.ORCID

Abstract

In this paper we propose a methodology for the efficient implementation of machine learning (ML)-based methods in particle-in-cell (PIC) codes, with a focus on Monte Carlo or statistical extensions to the PIC algorithm. The presented approach allows for neural networks to be developed in a Python environment, where advanced ML tools are readily available to proficiently train and test them. Those models are then efficiently deployed within highly scalable and fully parallelized PIC simulations during runtime. We demonstrate this methodology with a proof-of-concept implementation within the PIC code OSIRIS, where a fully connected neural network is used to replace a section of a Compton scattering module. We demonstrate that the ML-based method reproduces the results obtained with the conventional method and achieves better computational performance. These results offer a promising avenue for future applications of ML-based methods in PIC, particularly for physics extensions where a ML-based approach can provide a higher performance increase.

Funder

Fundação para a Ciência e a Tecnologia

H2020 European Research Council

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Reference38 articles.

1. Visual feature extraction by a multilayered network of analog threshold elements;Fukushima;IEEE Trans. Syst. Sci. Cybern,1969

2. Han, J. & Moraga, C. 1995 The influence of the sigmoid function parameters on the speed of backpropagation learning. In International Workshop on Artificial Neural Networks, pp. 195–201. Springer.

3. Abadi, M. , Agarwal, A. , Barham, P. , Brevdo, E. , Chen, Z. , Citro, C. , Corrado, G.S. , Davis, A. , Dean, J. , Devin, M. , 2015 TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org.

4. Quantum electrodynamics vacuum polarization solver;Grismayer;New J. Phys,2021

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3