Nonlinear dynamics of electron bunches in the presence of dissipative effects

Author:

KRAFFT C.,VOLOKITIN A.,FLÉ M.

Abstract

The transition phase between two nonlinear regimes of electron-beam–wave interaction depending on the amplitude and the nature of the effective dissipation is investigated with the help of numerical simulations. Effective dissipation due to wave escaping to infinity out of the beam–wave interaction region as well as to collisions in the background plasma is considered. If the dissipation is strong enough, the evolution of the electron beam proceeds in a general way, independently of the type of dissipation and of the nature of the considered waves: structures of strongly concentrated electron bunches are formed. These bunches are not trapped in the wave, and decelerate continuously owing to friction on waves: in the presence of dissipation, the usual quasiperiodic exchange of energy between the wave and the trapped particles, which prevents the wave from collapsing, does not occur. Considering beam interaction with a finite number of waves (modulated wave packet), it is shown that, if the dissipation is strong enough, the structure of electron bunches is dynamically stable in a range of times exceeding several characteristic times of their formation.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonlinear electron beam interaction with a whistler wave packet;Physics of Plasmas;2000-11

2. Dynamically stable electron bunches in beam interaction with an electromagnetic wave packet;Journal of Experimental and Theoretical Physics Letters;2000-03

3. Electron beam interaction with space plasmas;Plasma Physics and Controlled Fusion;1999-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3