Plasma sheet thinning due to loss of near-Earth magnetotail plasma

Author:

Tretler RudolfORCID,Tatsuno Tomo,Hosokawa KeisukeORCID

Abstract

A one-dimensional (1-D) model for thinning of the Earth's plasma sheet (Chao et al., Planet. Space Sci., vol. 25, 1977, p. 703) according to the current disruption (CD) model of auroral breakup is extended to two dimensions. A rarefaction wave, which is a signature component of the CD model, is generated with an initial disturbance. In the 1-D gas model, the rarefaction wave propagates tailward at sound velocity and is assumed to cause thinning. Extending to a two-dimensional (2-D) gas model of a simplified plasma sheet configuration, the rarefaction wave is weakened, and the thinning ceases to propagate. Extending further to a 2-D plasma model by adding magnetic field into the lobes, the rarefaction wave is quickly lost in the plasma sheet recompression, but the plasma sheet thinning is still present. It propagates at a slower velocity than a 1-D model suggests, behind a wave train of pulses of increased pressure generated by the thinning process itself. This shows that the dynamics of plasma sheet thinning may be dominated by sheet–lobe interactions that are absent from the 1-D model and may not support the behaviour assumed by the CD model.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3