Effect of dust particle and magnetic field on EEPF and plasma oscillation

Author:

Kalita D.ORCID,Kakati B.,Kausik S. S.,Saikia B. K.,Bandyopadhyay M.ORCID

Abstract

The significance of dust particles for the electron energy probability function (EEPF) and plasma oscillations is studied under varying magnetic field strength in a filamentary discharge hydrogen plasma. The experimental result shows that with an increase in dust density, the electron density decreases as a result of the charging of dust grains in the plasma background. A bi-Maxwellian EEPF is computed in both a pristine hydrogen plasma and a dust-containing plasma at different magnetic field strengths. We have observed that the increase in magnetic field decreases the lower energy electron population. The electron population of the lower energy range shows nearly identical results at magnetic field, $B\leqslant 3.7$  mT whereas the behaviour of the high-energy electron population becomes identical for a field strength $B\leqslant 5.8$  mT. From the observation, we have seen that the mid energy electron population slightly decreases and the high energy electron population slightly increases due to the presence of dust particles as compared to a pristine plasma. Further, very low energy electron population remains almost unchanged. With increase in dust density, the mid energy electron population further decreases whereas the high energy electron population slightly increases for different magnetic fields. But, no changes were observed for the very low energy electron population in the presence of dust particles. From the study of plasma oscillation, it is observed that the dominant frequency associated with the plasma oscillation is matched with the ion cyclotron frequency. The amplitude of the ion cyclotron frequency reduces with the increase of dust density which might be due to the decrease of plasma density.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3