Laser-machined two-stage nozzle optimised for laser wakefield acceleration

Author:

Tomkus V.ORCID,Mackevičiūtė M.,Dudutis J.ORCID,Girdauskas V.ORCID,Abedi-Varaki M.ORCID,Gečys P.ORCID,Račiukaitis G.ORCID

Abstract

In this paper, the modelling and manufacturing of a two-stage supersonic gas jet nozzle enabling the formation of adaptive plasma concentration profiles for injection and acceleration of electrons using few-cycle laser beams are presented. The stages are modelled using the rhoSimpleFoam algorithm of the OpenFOAM computational fluid dynamics software. The first 200–300 ${\rm \mu}$ m diameter nozzle stage is dedicated to 1 % N2 + He gas jet formation and electron injection. By varying the pressure between the first and second stages of the injectors, the electron injection location could be adjusted, and the maximum acceleration distance could be ensured. By changing the concentration of the nitrogen in the gas mixture, the charge of the accelerated electrons could be controlled. The second nozzle stage is designed for acceleration in fully ionised He or hydrogen gas and forms the optimal plasma concentration for bubble formation depending on the laser pulse energy, duration and focused beam diameter. In order to reduce the diameter of the plasma profile formed by the first nozzle and the concentration drop gap between the two nozzles, a one-side straight section was introduced in the first nozzle. The shock wave reflected from the straight section of the wall propagates parallel to the shock wave of the intersecting supersonic jets and ensures a minimal gap between the jets. The second-stage longitudinal plasma concentration profile could have an increasing gas density gradient to compensate for dephasing between the electron bunch and the plasma wave due to wave shortening with increasing plasma concentration.

Funder

Lietuvos Mokslo Taryba

Publisher

Cambridge University Press (CUP)

Reference51 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3