Desingularization of 2D elliptic free-boundary problem with non-autonomous nonlinearity

Author:

Wan JieORCID

Abstract

In this paper, we consider the existence and limiting behaviour of solutions to a semilinear elliptic equation arising from confined plasma problem in dimension two \[ \begin{cases} -\Delta u=\lambda k(x)f(u) & \text{in}\ D,\\ u= c & \displaystyle\text{on}\ \partial D,\\ \displaystyle - \int_{\partial D} \frac{\partial u}{\partial \nu}\,{\rm d}s=I, \end{cases} \] where $D\subseteq \mathbb {R}^2$ is a smooth bounded domain, $\nu$ is the outward unit normal to the boundary $\partial D$ , $\lambda$ and $I$ are given constants and $c$ is an unknown constant. Under some assumptions on $f$ and $k$ , we prove that there exists a family of solutions concentrating near strict local minimum points of $\Gamma (x)=({1}/{2})h(x,\,x)- ({1}/{8\pi })\ln k(x)$ as $\lambda \to +\infty$ . Here $h(x,\,x)$ is the Robin function of $-\Delta$ in $D$ . The prescribed functions $f$ and $k$ can be very general. The result is proved by regarding $k$ as a $measure$ and using the vorticity method, that is, solving a maximization problem for vorticity and analysing the asymptotic behaviour of maximizers. Existence of solutions concentrating near several points is also obtained.

Publisher

Cambridge University Press (CUP)

Reference39 articles.

1. Conditions for nonlinear stability of stationary plane curvilinear flows of an ideal fluid;Arnol'd;Soviet Math. Doklady,1965

2. Qualitative Behavior and Bounds in a Nonlinear Plasma Problem

3. MULTIPLE CONDENSATIONS FOR A NONLINEAR ELLIPTIC EQUATION WITH SUB-CRITICAL GROWTH AND CRITICAL BEHAVIOUR

4. On an a priori estimate in the theory of hydrodynamic stability;Arnol'd;Amer. Math. Soc. Transl,1969

5. Sur certains problèmes de frontière libre;Berestycki;C. R. Acad. Sci. Paris,1976

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3