On conformally flat minimal Legendrian submanifolds in the unit sphere

Author:

Li CeceORCID,Xing ChengORCID,Yin JiabinORCID

Abstract

This paper is concerned with the study on an open problem of classifying conformally flat minimal Legendrian submanifolds in the $(2n+1)$ -dimensional unit sphere $\mathbb {S}^{2n+1}$ admitting a Sasakian structure $(\varphi,\,\xi,\,\eta,\,g)$ for $n\ge 3$ , motivated by the classification of minimal Legendrian submanifolds with constant sectional curvature. First of all, we completely classify such Legendrian submanifolds by assuming that the tensor $K:=-\varphi h$ is semi-parallel, which is introduced as a natural extension of $C$ -parallel second fundamental form $h$ . Secondly, such submanifolds have also been determined under the condition that the Ricci tensor is semi-parallel, generalizing the Einstein condition. Finally, as direct consequences, new characterizations of the Calabi torus are presented.

Publisher

Cambridge University Press (CUP)

Reference38 articles.

1. On the Ricci curvature of 3-submanifolds in the unit sphere

2. On Willmore Legendrian surfaces in $$\mathbb {S}^5$$ S 5 and the contact stationary Legendrian Willmore surfaces

3. On $C$-totally real submanifolds of $\mathbb{S}^{2n+1}(1)$ with non-negative sectional curvature

4. $C$-totally real submanifolds of Sasakian space forms;Dillen;J. Math. Pures Appl,1990

5. New equiaffine characterizations of the ellipsoids related to an equiaffine integral inequality on hyperovaloids;Hu;Math. Inequal. Appl,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3