Invariant set generated by a nonreal number is everywhere dense

Author:

Dubickas ArtūrasORCID

Abstract

A set of complex numbers $S$ is called invariant if it is closed under addition and multiplication, namely, for any $x, y \in S$ we have $x+y \in S$ and $xy \in S$ . For each $s \in {\mathbb {C}}$ the smallest invariant set ${\mathbb {N}}[s]$ containing $s$ consists of all possible sums $\sum _{i \in I} a_i s^i$ , where $I$ runs over all finite nonempty subsets of the set of positive integers ${\mathbb {N}}$ and $a_i \in {\mathbb {N}}$ for each $i \in I$ . In this paper, we prove that for $s \in {\mathbb {C}}$ the set ${\mathbb {N}}[s]$ is everywhere dense in ${\mathbb {C}}$ if and only if $s \notin {\mathbb {R}}$ and $s$ is not a quadratic algebraic integer. More precisely, we show that if $s \in {\mathbb {C}} \setminus {\mathbb {R}}$ is a transcendental number, then there is a positive integer $n$ such that the sumset ${\mathbb {N}} t^n+{\mathbb {N}} t^{2n} +{\mathbb {N}} t^{3n}$ is everywhere dense in ${\mathbb {C}}$ for either $t=s$ or $t=s+s^2$ . Similarly, if $s \in {\mathbb {C}} \setminus {\mathbb {R}}$ is an algebraic number of degree $d \ne 2, 4$ , then there are positive integers $n, m$ such that the sumset ${\mathbb {N}} t^n+{\mathbb {N}} t^{2n} +{\mathbb {N}} t^{3n}$ is everywhere dense in ${\mathbb {C}}$ for $t=ms+s^2$ . For quadratic and some special quartic algebraic numbers $s$ it is shown that a similar sumset of three sets cannot be dense. In each of these two cases the density of ${\mathbb {N}}[s]$ in ${\mathbb {C}}$ is established by a different method: for those special quartic numbers, it is possible to take a sumset of four sets.

Publisher

Cambridge University Press (CUP)

Reference24 articles.

1. 3 Akiyama, S. , Positive finiteness of number systems, in: Number theory, Dev. Math. Vol. 15 (Springer, New York, 2006), pp. 1–10.

2. 5 Conrad, K. , Density for the ring of integers, Handouts, available at https://virtualmath1.stanford.edu/~conrad/154Page/handouts.html.

3. A note on Kronecker's approximation theorem;Kueh;Amer. Math. Monthly,1986

4. Sumset of three arithmetic progressions in the complex plane;Dubickas;Lith. Math. J,2023

5. Recent extensions of Descartes’ rule of signs;Curtiss;Ann. Math. (2),1918

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3