Abstract
Let
$m,\,r\in {\mathbb {Z}}$
and
$\omega \in {\mathbb {R}}$
satisfy
$0\leqslant r\leqslant m$
and
$\omega \geqslant 1$
. Our main result is a generalized continued fraction for an expression involving the partial binomial sum
$s_m(r) = \sum _{i=0}^r\binom{m}{i}$
. We apply this to create new upper and lower bounds for
$s_m(r)$
and thus for
$g_{\omega,m}(r)=\omega ^{-r}s_m(r)$
. We also bound an integer
$r_0 \in \{0,\,1,\,\ldots,\,m\}$
such that
$g_{\omega,m}(0)<\cdots < g_{\omega,m}(r_0-1)\leqslant g_{\omega,m}(r_0)$
and
$g_{\omega,m}(r_0)>\cdots >g_{\omega,m}(m)$
. For real
$\omega \geqslant \sqrt 3$
we prove that
$r_0\in \{\lfloor \frac {m+2}{\omega +1}\rfloor,\,\lfloor \frac {m+2}{\omega +1}\rfloor +1\}$
, and also
$r_0 =\lfloor \frac {m+2}{\omega +1}\rfloor$
for
$\omega \in \{3,\,4,\,\ldots \}$
or
$\omega =2$
and
$3\nmid m$
.
Publisher
Cambridge University Press (CUP)
Reference11 articles.
1. 3 Glasby, S. P. , Magma computer code for Remark 5.4, https://stephenglasby.github.io/BerryEsseenMagmaCode.
2. Continued Fractions
3. On the Maximum of the Weighted Binomial Sum $2^{-r}\sum_{i=0}^r\binom{m}{i}$
4. The Magma Algebra System I: The User Language
5. 5 Granville, Andrew , Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers. In Organic mathematics (Burnaby, BC, 1995), pp. 253–276. CMS Conf. Proc., Vol. 20 (Amer. Math. Soc., Providence, RI, 1997).