Author:
Besançon Thierry E.,Penner Donald,Everman Wesley J.
Abstract
Previous reports have underscored antagonism that may result from mixing glyphosate and glufosinate across a wide range of application rates and for various broadleaf and grass weed species, but no investigation has been conducted to characterize glyphosate absorption and translocation when combined with glufosinate. The objectives of this study were to evaluate herbicide efficacy and assess herbicide interaction and physiological response with combinations of glyphosate and glufosinate on common lambsquarters, velvetleaf, and giant foxtail. Greenhouse studies to determine interaction resulted in strong and persistent antagonism between glyphosate at 110 and 220 g ae ha−1and glufosinate at 20 or 40 g ae ha−1in giant foxtail, whereas only transient and reduced antagonism was noted for velvetleaf and common lambsquarters. Combining glyphosate and glufosinate increased the maximum absorption of glyphosate by 9% and 23% in velvetleaf and giant foxtail, respectively, compared with glyphosate alone. In velvetleaf, averaged over time, only 2.6% of the applied radioactivity translocated out of the treated leaf when glufosinate was mixed with glyphosate compared with 9.9% when glyphosate was applied alone. In giant foxtail, 21.6% of the [14C]glyphosate translocated out of the treated leaf when glufosinate was mixed with glyphosate compared with 52.4% when glyphosate was applied alone. Conversely, no change in the radioactive pattern of translocation was noted for common lambsquarters. These results suggest that reduced translocation of glyphosate is the physiological mechanism responsible for the antagonism observed between glyphosate and glufosinate in giant foxtail and, to a lesser extent, in velvetleaf.
Publisher
Cambridge University Press (CUP)
Subject
Plant Science,Agronomy and Crop Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献