Target-Site Point Mutation Conferring Resistance to Trifluralin in Rigid Ryegrass (Lolium rigidum)

Author:

Fleet Benjamin,Malone Jenna,Preston Christopher,Gill Gurjeet

Abstract

Populations of rigid ryegrass suspected of resistance to trifluralin due to control failures exhibited varying levels of susceptibility to trifluralin, with 15 out of 17 populations deemed resistant (>20% plant survival). Detailed dose–response studies were conducted on one highly resistant field-evolved population (SLR74), one known multiply resistant population (SLR31), and one susceptible population (VLR1). On the basis of the dose required to kill 50% of treated plants (LD50), SLR74 had 15-fold greater resistance than VLR1, whereas, the multiply resistant SLR31 had 10-fold greater resistance than VLR1. Similarly, on the basis of dose required to reduce shoot biomass by 50% (GR50), SLR74 had 17-fold greater resistance than VLR1, and SLR31 had 8-fold greater resistance than VLR1. Sequencing of the α-tubulin gene from resistant plants of different populations confirmed the presence of a previously known goosegrass mutation causing an amino acid substitution at position 239 from threonine to isoleucine in resistant population SLR74. This mutation was also found in 4 out of 5 individuals in another highly resistant population TR2 and in 3 out of 5 individuals of TR4. An amino acid substitution from valine to phenylalanine at position 202 was also observed in TR4 (3 out of 5 plants) and TR2 (1 out of 5 plants). There was no target-site mutation identified in SLR31. This study documents the first known case of field-evolved target-site resistance to dinitroaniline herbicides in a population of rigid ryegrass.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3