Comparative Analysis of 2,4-D Uptake, Translocation, and Metabolism in Non–AAD-1 Transformed and 2,4-D–Resistant Corn

Author:

Skelton Joshua J.,Simpson David M.,Peterson Mark A.,Riechers Dean E.

Abstract

The Enlist™ traits provide 2,4-D resistance in several crops. Though corn is naturally tolerant to 2,4-D, the engineered trait conferred by the aryloxyalkanoate dioxygenase-1 (AAD-1) enzyme provides enhanced 2,4-D tolerance and confers resistance to the graminicide herbicide family, the aryloxyphenoxypropionates. The objectives of this research were 2-fold: (1) measure and compare uptake, translocation, and metabolism of 2,4-D in Enlist™ (E, +AAD1) and non–AAD-1 transformed (NT, −AAD1) isogenic corn hybrids; and (2) and investigate the effect of glyphosate and/or the Enlist™ adjuvant system (ADJ) on these factors and corn injury. Uptake of radiolabeled 2,4-D acid applied alone in corn was not altered by the addition of ADJ when tank mixed at 24 h after application (HAA). By contrast, uptake of radiolabeled 2,4-D was significantly lower (69%) compared with 2,4-D plus ADJ (89%) at 24 HAA with a premixed formulation of 2,4-D choline plus glyphosate-dimethylamine (Enlist Duo™ herbicide [EDH]). Translocation of 2,4-D between the two corn hybrids was not different. E corn metabolized more 2,4-D (100% of absorbed) than NT corn (84%), and glyphosate did not alter 2,4-D metabolism. Furthermore, the metabolism of 2,4-D to nonphytotoxic dichlorophenol (DCP) and subsequent DCP-derived metabolites formed in E corn was examined. Injury to E corn is not typically observed in the field; however, injury symptoms were clearly evident in E corn (within 24 HAA) when formulated acetochlor was tank mixed with EDH, which correlated with an increase in 2,4-D uptake during this time period. In summary, the lack of injury in E corn following EDH applied alone may be attributed to a relatively low amount of 2,4-D uptake and the combination of natural and engineered 2,4-D metabolic pathways.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3