Phylogenetic patterns of character evolution in the hyobranchial apparatus of early tetrapods

Author:

Witzmann Florian

Abstract

ABSTRACTThe morphologies of the hyobranchial apparatus in early tetrapods are reviewed, based primarily on first-hand examination and supplemented by published descriptions. The basic arrangement of the “aquatic” hyobranchium, with four pairs of branchial arches and internal gills, was conserved to a remarkable degree across the fish–to–tetrapod transition and was retained in further evolution in adults of several tetrapod lineages. Thus, a fish-like hyobranchium in basal tetrapods does not necessarily represent a larval or paedomorphic character, respectively, as was often suggested in analogy to extant salamanders. Rather, it represents the plesiomorphic state of the adult hyobranchium in tetrapods. The changes in the hyobranchium during the fish–to–tetrapod transition include the reduction of the number of skeletal elements and their morphological simplification. In all three presently discussed scenarios of lissamphibian origin, the temnospondyl, lepospondyl and diphyly hypotheses, the internal gills were reduced independently within temnospondyls and on the amniote stem below seymouriamorphs. Evidence of remodelling into a true “terrestrial” hyobranchium, with reduction of the posterior branchial arches and modification to support terrestrial tongue feeding, is scarce in early tetrapods. It evolved within temnospondyls in zatracheids, amphibamids and lissamphibians, as well as once or several times in early amniotes or in their immediate stem-forms.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference114 articles.

1. A new stereospondyl from the German Middle Triassic, and the origin of the Metoposauridae

2. Dipnoan (lungfish) skulls and the relationships of the group: a study based on new species from the Devonian of Australia

3. The intrarelationships and evolutionary history of the temnospondyl family branchiosauridae

4. Mordex laticeps and the base of the Trematopidae;Milner;Journal of Vertebrate Paleontology,2007

5. Gill Arches and the Phylogeny of Fishes, With Notes on the Classification of Vertebrates;Nelson;Bulletin of the American Museum of Natural History,1969

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3