How can we be sure fracking will not pollute aquifers? Lessons from a major longwall coal mining analogue (Selby, Yorkshire, UK)

Author:

Younger Paul L.

Abstract

ABSTRACTDevelopment of shale gas by hydraulic fracturing (‘fracking’) is opposed by campaigners who propose (inter alia) that freshwater aquifers could be polluted by upward migration of fractures and any fluids they contain. Prima facie hydrogeological analysis of this proposition has been undertaken. For it to occur, two conditions must be satisfied: (i)sufficient hydraulic interconnection (i.e., a continuous permeable pathway); and(ii)a sustained driving head, oriented upwards.With regard to (i), shale gas developers have a major vested interest in avoiding creating such hydraulic connection, as it would result in uneconomically excessive amounts of water needing to be pumped from their wells to achieve gas production. In relation to (ii), nominal upward hydraulic gradients will typically only be developed during fracking for periods of a few hours, which is far too brief to achieve solute transport over vertical intervals of one or more kilometres; thereafter, depressurisation of wells to allow gas to flow will result in downward hydraulic gradients being maintained for many years. The proposition is therefore found to be unsupportable. Albeit for contrasting motivations, developers and environmental guardians turn out to have a strong common interest in avoiding inter-connection to aquifers.A powerful illustration of the potential long-term effects of fracking is provided by the hydrogeological history of underground coal mining in the UK. Where large-scale mining proceeded from the surface downwards, major hydraulic inter-connection of shallow and deep zones resulted in widespread water pollution. However, where new mines were developed at depth without connections to shallow old workings (as in the Selby Coalfield, Yorkshire), complete hydraulic isolation from the near-surface hydrogeological environment was successfully maintained. This was despite far greater stratal disruption and induced seismicity than shale gas fracking could ever produce. The lesson is clear: without hydrogeological connectivity to shallow aquifers, shale gas fracking per se cannot contaminate shallow ground water.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference114 articles.

1. Potential Contaminant Pathways from Hydraulically Fractured Shale to Aquifers

2. Simple generalized methods for estimating aquifer storage parameters

3. Wyatt, L. , Watson, I. , & Sawyer, T. 2011. 15 years of mine water analysis and developments in monitoring of abandoned coal mines in the United Kingdom. In Rüde, T. R. , Freund, A. & Wolkersdorfer, C. (eds) Mine Water – Managing the Challenges, 645–48. [Proceedings of the International Mine Water Association Congress, Aachen, Germany, Sept 4–11, 2011.]

4. Quantification of potential macroseismic effects of the induced seismicity that might result from hydraulic fracturing for shale gas exploitation in the UK

5. Part 4: Compositional variations of North Sea formation waters

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3