Clay mineralogical characteristics and the palaeoclimatic significance of a Holocene to Late Middle Pleistocene loess–palaeosol sequence from Chaoyang, China

Author:

Sun Zhong-Xiu,Wang Qiu-Bing,Han Chun-Lan,Zhang Qing-Jie,Owens Phillip R.

Abstract

ABSTRACTChanges in soil chemistry in response to varying climatic regimes can alter the equilibria of soil systems and result in different clay minerals. Variations in phyllosilicate clay composition can reflect temporal and spatial climatic changes, such as summer/winter monsoon cycles. The objective of this research was to investigate the mineralogy of the clay fractions as a proxy for determining variations in the East Asian monsoon climate, based on a section at Chaoyang in China spanning the last 0.423 Ma BP. The clay mineralogy record in the Chaoyang section was compared with other proxies as recorded in this section and with other palaeoclimatic indicators, including oxygen isotopes from oceanic sediments and loess–palaeosol sections on the Chinese Loess Plateau (CLP). The results from clay mineralogy and related climatic studies show that the summer monsoon has a trend of four increased stages and four decreased stages; whereas the winter monsoon displays the opposite trend. During the last 0.423 Ma BP, the strongest winter monsoon occurred around 0.243–0.311 Ma BP. During this period, which included an intense winter monsoon, the soil in the section had the least illite, one of the smallest kaolinite and illite/Chlorite (I/C) indices and an overall decreasing clay content. The period 0.225–0.243 Ma BP had the strongest summer monsoon over the last 0.423 Ma BP. This period had the greatest amount of illite, the highest I/C index, greater overall clay content and the strongest magnetic susceptibility signal. Additionally, this section contained the smallest mean grain size. The multi-monsoon climate cycles of alternating cold-dry and warm-moist conditions as recorded in the Chaoyang section corresponded well with multiple glaciation cycles based on deep sea sediments. This indicates that the Chaoyang section provides a record of palaeoclimate changes in northeast China that can be linked to mineralogical suites to assist in reconstructing the palaeoclimate over the Late Middle Pleistocene, and complements the global palaeoclimate records in the CLP.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3