After the ice: Lateglacial and Holocene landforms and landscape evolution in Scotland

Author:

BALLANTYNE Colin K.

Abstract

ABSTRACTDuring Lateglacial cold periods, permafrost developed throughout Scotland, sediment-mantled slopes were extensively modified by solifluction and other forms of periglacial mass movement, large-scale sorted patterned ground formed on plateaux, and enhanced rockfall resulted in talus accumulation below cliffs. Most rock-slope failures occurred within five millennia following ice-sheet deglaciation, with many probably triggered by uplift-induced earthquakes; numerous debris-free scarps represent sites where Lateglacial rockslide debris was excavated by glaciers during the Younger Dryas Stade (∼12.9–11.7 ka). Sandar and outwash fans deposited by glacial rivers during ice-sheet retreat were incised to form high-level terraces. Under the cool temperate but relatively stable climate of the Holocene, solifluction and patterned ground formation continued to operate on high ground, though accumulation of high-level aeolian deposits on most mountains was terminated by erosion during the Little Ice Age. Drift-mantled slopes and talus slopes have been extensively eroded by translational failures and debris flows, the latter depositing debris cones on upland valley floors. The incidence of Holocene rockslides has been much lower than during the Lateglacial period. Dating of alluvial deposits and low Holocene terraces suggests no consistent pattern of Holocene floodplain evolution: incision has apparently dominated in the Highlands, aggradation in the lowlands, and floodplains in the Southern Uplands have asynchronous histories of incision and aggradation. Studies of floodplain behaviour over the past 200–300 years suggest that though major floods rework the floodplains of braided and piedmont rivers, there is no tendency towards net floodplain aggradation or incision. Most valley-side alluvial fans accumulated episodically in the last 4000 years, many in response to lowering of hillslope stability by woodland clearance. For many postglacial landsystems, disentangling the effects of declining paraglacial sediment supply, climate change and local influences (extreme rainstorm events or anthropogenic impacts) remains challenging.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3