Author:
XU Hui-Juan,DELGADO-BAQUERIZO Manuel,PAN Fu-Xia,AN Xin-Li,SINGH Brajesh K.,KHAN Sardar,LI Gang,TANG Jian-Feng,ZHAO Xiao-Feng,YAO Huai-Ying,ZHU Yong-Guan
Abstract
ABSTRACTIdentifying the relative importance of urban and non-urban land-use types for potential denitrification derived N2O at a regional scale is critical for quantifying the impacts of human activities on nitrous oxide (N2O) emission under changing environments. In this study we used a regional dataset from China including 197 soil samples and six land-use types to evaluate the main predictors (land use, heavy metals, soil pH, soil moisture, substrate availability, functional and broad microbial abundances) of potential denitrification using multivariate and pathway analysis. Our results provide empirical evidence that soils on farms have the greatest potential denitrifying ability (PDA) (10.92±6.08ng N2O-N·g–1 dry soil·min–1) followed by urban soil (6.80±5.35ng N2O-N·g–1 dry soil·min–1). Our models indicate that land use (low vs. high human activity), followed by total nitrogen (TN) and heavy metals (Cu, Zn, Pb, Cd) was the most important driver of PDA. In addition, our path analysis suggests that at least part of the impacts of land use on potential denitrification were mediated via microbial abundance, soil pH and substrates including TN, dissolved organic carbon and nitrate. This study identifies the main predictors of denitrification at a regional scale which is needed to quantify the impact of human activities on ecosystem functionality under changing conditions.
Publisher
Cambridge University Press (CUP)
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献