Arsenate removal from aqueous solutions by Mg/Fe-LDH-modified biochar derived from apple tree residues

Author:

SHIRIAZAR Mohammad Ali,SEPEHR EbrahimORCID,MALEKI Ramin,KHODAVERDILOO Habib,ASADZADEH Farrokh,DOVLATI Behnam,RENGEL Zed

Abstract

ABSTRACT The development of non-toxic and inexpensive materials for arsenic removal is required due to water sources being polluted by arsenic in many countries around the world. The main aim of this study was to characterise the capacity and behaviour of Mg/Fe layered double hydroxides/biochar [Magnesium/Iron-Layered Double Hydroxide (Mg/Fe-LDH)] composite for arsenate adsorption from solution. Apple tree pruning residues were used to produce biochar at 500 °C under oxygen-limited atmosphere. Mg/Fe-LDH-biochar was synthesised using a spontaneous in situ co-precipitation method. Batch experiments were used for the assessment of the kinetics, isotherms, and the effects of initial solution pH (4, 6, 8, and 10), ionic strength (0.01, 0.1, and 0.2 mol L−1), and co-occurring anions (carbonate and phosphate) on the arsenate removal. Scanning electron microscope images showed Mg/Fe-LDH were loaded on the biochar porous structure, and X-ray diffraction analysis affirmed the presence of crystalline LDH minerals in Mg/Fe-LDH-biochar. Surface modification of biochar by Mg/Fe-LDH increased the maximum arsenate adsorption capacity (3.6 mg g−1) ten times compared to unmodified biochar (0.35 mg g−1). Arsenate removal capacity increased from 4.2 % to 54.2 % with modification of biochar by Mg/Fe-based LDH. Kinetic studies indicated that >90 % of Mg/Fe-LDH-biochar arsenate adsorption from a starting concentration of 10 mg L−1 occurred in the first 120 min. Pseudo-second order and Langmuir models described well the kinetics and isotherm of arsenate adsorption by biochar and Mg/Fe-LDH-biochar. Mg/Fe-LDH-biochar showed maximum arsenate removal capacity at pH 6. Increasing solution ionic strength and the presence of phosphate and carbonate anions suppressed arsenate removal by Mg/Fe-LDH-biochar. In summary, surface modification of biochar using Mg/Fe-LDH produced a potentially more cost-effective, locally available, reusable, and non-toxic arsenic adsorbent for decontamination of surface- and groundwater.

Funder

Iran National Science Foundation

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3