On the thickness of the Antarctic ice, and its relations to that of the glacial epoch

Author:

CROLL James,SUGDEN DavidORCID

Abstract

ABSTRACTAt a time when nobody has yet landed on the Antarctic continent (1879), this presentation and accompanying paper predicts the morphology, dynamics and thermal regime of the Antarctic ice sheet. Mathematical modelling of the ice sheet is based on the assumptions that the thickness of tabular icebergs reflects the average thickness of the ice at the margin and that the surface gradients are comparable to those of reconstructed former ice sheets in the Northern Hemisphere. The modelling shows that (a) ice is thickest near the centre at the South Pole and thins towards the margin; (b) the thickness at the pole is independent of the amount of snowfall at that place; and (c) the mean velocity at the margin, assuming a mean annual snowfall of two inches per year, is 400–500 feet per year. The thermal regime of the ice sheet is influenced by three heat sources – namely, the bed, the internal friction of ice flow and the atmosphere. The latter is the most significant and, since ice has a downwards as well as horizontal motion, this carries cold ice down into the ice sheet. Since the temperature at which ice melts is lowered by pressure at a rate of 0.0137 °F for every atmosphere of pressure (something known since 1784), much of the ice sheet and its base must be below the freezing point. Estimates of the thickness of ice at the centre depend closely on the surface gradients assumed and range between 3 and 24 miles. Such uncertainty is of concern since both the volume and gravitational attraction of the ice mass have an effect on global sea level. In order to improve our estimate of the volume of ice, we will have to wait 76 years for John Glen to develop a realistic flow law for ice.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference18 articles.

1. On the physical cause of the motion of glaciers;Croll;Philosophical Magazine,1869

2. Introduction

3. On the physical cause of the change of climate during geological epochs;Croll;Philosophical Magazine,1864

4. Account of an expedition to Greenland in the year 1870;Nordenskjöld;Geological Magazine,1872

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ‘The most remarkable man’: James Croll, Quaternary scientist;Journal of Quaternary Science;2022-04

2. James Croll – bicentenary and biography, from janitor to genius;Earth and Environmental Science Transactions of the Royal Society of Edinburgh;2021-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3