Vision in fossilised eyes

Author:

Schoenemann Brigitte,Clarkson Euan N. K.

Abstract

ABSTRACTThis paper presents a review of recent developments in the study of vision in fossil arthropods, beginning with a discussion of the origin of visual systems. A report of the eyes of Cambrian arthropods from different Lagerstätten, especially the compound and median arthropod eyes from the Chengjiang fauna of China, is given. Reference is made also to compound eyes from the lower Cambrian Emu Bay Shale fauna of Australia and the Sirius Passet fauna of Greenland; also to the three-dimensionally preserved ‘Orsten’ fauna of Sweden. An understanding of how these eyes functioned is possible by reference to living arthropods and by using physical tools developed by physiologists. The eyes of trilobites (lower Cambrian to Upper Permian) are often very well preserved, and the structure and physiology of their calcite lenses, and the eye as a whole, are summarised here, based upon recent literature. Two main kinds of trilobite eyes have been long known. Firstly, there is the holochroal type, in which the lenses are usually numerous, small and closely packed together; this represents the ancestral kind, first found in lowermost Cambrian trilobites. The second type is the schizochroal eye, in which the lenses are relatively much larger and each is separated from its neighbours. Such eyes are confined to the single suborder Phacopina (Lower Ordovician to Upper Devonian). This visual system has no real equivalents in the animal kingdom. In this present paper, the origin of schizochroal eyes, by paedomorphosis from holochroal precursors, is reviewed, together with subsequent evolutionary transitions in the Early Ordovician. A summary of new work on the structure and mineralogy of phacopid lenses is presented, as is a discussion of the recent discovery of sublensar sensory structures in Devonian phacopids, which has opened up new dimensions in the study of trilobite vision.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3