Abstract
Abstract
Pursuing highly efficient aerodynamic efficiency in aircraft has driven the development of morphing wing technology. However, there are still limitations to morphing wing technology, including adaptation of load and deformation, and deformation monitoring and control. This work introduces an intelligent trailing edge structure that balances deformation and load-bearing and achieves deformation monitoring and active control. Firstly, we employ a honeycomb structure for non-uniform filling of the trailing edge. The filling method is obtained through inverse design using a genetic algorithm based on neural networks, allowing the device to undergo continuous deformation while meeting load-bearing requirements. The bending deformation of the wing is achieved using shape memory alloy (SMA) wire. Additionally, we design and fabricate a metal-based multichannel flexible sensor, and based on beam bending theory, we establish the strain–displacement relationship. These sensors are affixed to the trailing edge surface, enabling real-time monitoring and active control of trailing edge deformation. Building an experimental platform to test this system, the results show that the sensors can accurately give feedback on the degree of wing deformation, and the error of active deformation control technology is less than 4%. This provides a new method for the deformation feedback control closed-loop system of intelligent variant wings.
Funder
National Key Research and Development Program of China
Publisher
Cambridge University Press (CUP)