Comparison of the microalgal community within fast ice at two sites along the Ross Sea coast, Antarctica

Author:

Ryan K.G.,Hegseth E.N.,Martin A.,Davy S.K.,O'Toole R.,Ralph P.J.,McMinn A.,Thorn C.J.

Abstract

Diverse microbial communities survive within the sea ice matrix and are integral to the energy base of the Southern Ocean. Here we describe initial findings of a four season survey (between 1999–2004) of community structure and biomass of microalgae within the sea ice and in the underlying water column at Cape Evans and Cape Hallett, in the Ross Sea, Antarctica as part of the Latitudinal Gradient Project. At Cape Evans, bottom-ice chlorophyll a levels ranged from 4.4 to 173 mg Chl a m−2. Dominant species were Nitzschia stellata, N. lecointei, and Entomoneis kjellmanii, while the proportion of Berkeleya adeliensis increased steadily during spring. Despite being obtained later in the season, the Cape Hallett data show considerably lower standing stocks of chlorophyll ranging from 0.11 to 36.8 mg Chl a m−2. This difference was attributed to a strong current, which may have ablated much of the bottom ice biomass and provided biomass to the water below. This loss of algae from the bottom of the ice may explain why the ice community contributed only 2% of the standing stock in the total water column. Dominant species at Cape Hallett were Nitzschia stellata, Fragilariopsis curta and Cylindrotheca closterium. The low biomass at Cape Hallett and the prevalence of smaller-celled diatoms in the bottom ice community indicate that the ice here is more typical of pack ice than fast ice. Further data will allow us to quantify and model the extent to which ice-driven dynamics control the structure and function of the sea ice ecosystem and to assess its resilience to changing sea ice conditions.

Publisher

Cambridge University Press (CUP)

Subject

Geology,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3