Geochemistry of streams from Byers Peninsula, Livingston Island

Author:

Lyons W. Berry,Welch K.A.,Welch S.A.,Camacho A.,Rochera C.,Michaud L.,deWit R.,Carey A.E.

Abstract

AbstractIn January and February 2009, a series of water samples were collected from streams on Byers Peninsula. These samples were analysed for major elements and δ18O to determine the role of lithology and landscape position on stream geochemistry, and to understand better the hydrology (i.e. residence time of water) of these systems. Precipitation chemistry is enriched in Na+, as are the streams located close to the coast. Streams originating from inland locations have much higher percentages of Ca2+. In contrast, Mg2+ varied little, though streams that are in greater contact with volcanic-derived soils have slightly higher concentrations. Anion percentages varied greatly between streams with SO42- ranging from 5% to 45% of the anion composition. Dissolved Si concentrations as high as 141 μM were observed. All these data suggest that active chemical weathering is occurring in this region. A time series over 13 days at one stream showed little variation in major element geochemistry. The δ18O of precipitation samples collected over this same period varied by ∼10‰ while the majority of stream samples varied less than ∼1.5‰. These data indicate that the stream waters represent mixtures of precipitation events, melting snow and water from the subsurface that had gained solutes through chemical weathering.

Publisher

Cambridge University Press (CUP)

Subject

Geology,Ecology, Evolution, Behavior and Systematics,Oceanography

Reference39 articles.

1. Geology of a Mesozoic intra-arc sequence on Byers Peninsula, Livingston Island, South Shetland Islands;Smellie;British Antarctic Survey Bulletin,1980

2. Basalt weathering in Central Siberia under permafrost conditions

3. Lithostratigraphy of volcanic and sedimentary sequences in central Livingston Island, South Shetland Islands

4. Geochemical linkages among glaciers, streams, and lakes within the Taylor Valley, Antarctica;Lyons;Antarctic Research Series,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3