Raman analysis of blue ice tephra: an approach to tephrachronological dating of ice cores

Author:

Barletta Robert E.

Abstract

AbstractTephra in glacial ice provide a method to obtain a depth vs chronology correlation within an ice core. Currently, core sections containing particulate must be sacrificially analysed to determine the nature of the particulate (e.g. aerosol, micrometeor, volcanic ash), and, in the case of volcanic ash, the event tied to the particle. Characterization through melting and chemical analysis precludes, de facto, its use for other purposes. A non-destructive technique to characterize particulates in ice cores prior to sectioning the samples, e.g. optical interrogation, would be useful, especially if chemical information specific to particular volcanic eruptions could be gleaned from such an analysis. We investigated the use of micro-Raman spectroscopy for this purpose. Spectra were obtained on samples of Antarctic blue ice tephra from different sources along with a reference ash sample of New Mexico Bandelier Tuff. Vitreous and crystalline particles in the samples were characterized. For vitreous material, a detailed analysis of the Raman-active vibrational bands of the glass structure was found to have the potential of being a unique identifier of the source of the glass, however, additional library development is needed for implementation.

Publisher

Cambridge University Press (CUP)

Subject

Geology,Ecology, Evolution, Behavior and Systematics,Oceanography

Reference22 articles.

1. Effect of water on the structure of rhyolite glasses - X-ray diffraction and Raman spectroscopy studies

2. Mineralogy of a Martian meteorite as determined by Raman spectroscopy

3. Progress in determining water and glasses and melt inclusions with Raman spectroscopy: a short review;Thomas;Zeitschrift für Geologische Wissenschaften,2006

4. Laser Raman spectroscopic analysis of Mount St. Helens ash from the May 18, 1980 eruption;Ishizaki;Journal of Environmental Science,1982

5. Englacial tephrostratigraphy of Erebus volcano, Antarctica

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3