Limnology and biology of saline lakes in the Rauer Islands, eastern Antarctica

Author:

Hodgson D. A.,Vyverman W.,Sabbe K.

Abstract

The Rauer Islands contain more than fifty shallow lakes and small ephemeral ponds. Despite their proximity to the Vestfold Hills - one of the most diverse and intensively studied lake districts of eastern Antarctica - the lakes of the Rauer Islands have remained undescribed. In this study the physical and chemical limnology and biology of ten lakes is presented and their species-environment relationships explored using multivariate statistics. Analyses of chemical and biological data indicate that the Rauer Islands form a distinct limnological province amongst the lakes of the Prydz Bay oases. Salinities range from hypo- to hyper-saline with an ionic order close to that of seawater. Deviance from this order indicates either an earlier origin for some of the most hypersaline lakes when compared with the Vestfold Hills, more rapid evaporation vs precipitation or differences in the sources of ions resulting from isostatic history. With fluctuating salinities, winter water temperatures below –10°C, seasonal ice and slush formation, desiccation and high levels of solar radiation, the lacustrine environment presents considerable abiotic challenges for biological survival. Results indicate that there is little or no planktonic flora in the lakes and no zooplankton were encountered. Despite this, analyses of pigments, diatoms and other micro-algae revealed an active and diverse benthic biota characterized by filamentous cyanobacteria with interstitial algae. Thirty-eight diatom taxa, and a selection of Chlorophyta and Xanthophyta were detected amongst the cyanobacteria. Clusters in the diatom data correspond to salinity. Further analyses of the relationships between the biota and their environment revealed some of the strategies employed for survival. In particular, the synthesis of scytonemin was detected. This pigment is known to function as an extracellular UV sunscreen which protects cyanobacterial cells against damage by ultraviolet radiation. These results support the hypothesis that environmental extremes and biogeographical isolation control the biology of these lakes.

Publisher

Cambridge University Press (CUP)

Subject

Geology,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3