Author:
Bjorkman Karen S.,Bjorkman Jon E.,Wood Kenneth
Abstract
AbstractWe describe a technique for estimating average temperatures of Be star disks from analysis of ultraviolet spectropolarimetry. The technique utilizes the fact that the spectrum of the scattered starlight is sensitive to the circumstellar opacity, and hence temperature, since the signature of the disk material is imprinted on the scattered light spectrum. Analysis of the polarization spectrum thus allows us to disentangle the relative contributions of the star and disk, and thereby obtain an estimate of the average disk opacity as a function of wavelength. Using an LTE line-blanketed model (containing about 106 spectral lines) for the opacity, we determine a theoretical opacity as a function of temperature. By comparing this to the opacity deduced from the spectropolarimetry, we can estimate the average disk temperature. For classical Be stars, the relative strengths of the Fe II and Fe III multiplets at around 2400Å and 1900Å, respectively, are a sensitive temperature diagnostic, so that the temperature estimate can be made within ±1000K. We demonstrate our technique with analysis of UV spectropolarimetry (from WUPPE) of the classical Be star ζ Tau, for which we infer an isothermal disk temperature of14000K.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献