The preservation of cause and effect in the rock record

Author:

D'Antonio Michael P.ORCID,Ibarra Daniel E.,Boyce C. Kevin

Abstract

Abstract Evolutionary events may impact the geological carbon cycle via transient imbalances in silicate weathering, and such events have been implicated as causes of glaciations, mass extinctions, and oceanic anoxia. However, suggested evolutionary causes often substantially predate the environmental effects to which they are linked—problematic when carbon cycle perturbations must be resolved in less than a million years to maintain Earth's habitability. What is more, the geochemical signatures of such perturbations are recorded as they occur in widely distributed marine sedimentary rocks that have been densely sampled for important intervals in Earth history, whereas the fossil record—particularly on land—is governed by the availability of sedimentary basins that are patchy in both space and time, necessitating lags between the origination of an evolutionary lineage and its earliest occurrence in the fossil record. Here, we present a simple model of the impact of preservational filtering on sampling to show that an evolutionary event that causes an environmental perturbation via weathering imbalance should not appear earlier in the rock record than the perturbation itself and, if anything, should appear later rather than simultaneously. The Devonian Hangenberg glaciation provides an example of how evolutionary events might be more fruitfully considered as potential causes of environmental perturbations. Just as the last samplings of species lost in mass extinction are expected to come before the true environmental event, first appearance should be expected to postdate the geological expression of a lineage's environmental impact with important implications for our reading of Earth history.

Funder

UC Berkeley Miller Institute for Basic Research

UC President's Postdoctoral Fellowship

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3