Machine learning identifies ecological selectivity patterns across the end-Permian mass extinction

Author:

Foster William J.ORCID,Ayzel GeorgyORCID,Münchmeyer JannesORCID,Rettelbach TabeaORCID,Kitzmann Niklas H.ORCID,Isson Terry T.,Mutti Maria,Aberhan Martin

Abstract

AbstractThe end-Permian mass extinction occurred alongside a large swath of environmental changes that are often invoked as extinction mechanisms, even when a direct link is lacking. One way to elucidate the cause(s) of a mass extinction is to investigate extinction selectivity, as it can reveal critical information on organismic traits as key determinants of extinction and survival. Here we show that machine learning algorithms, specifically gradient boosted decision trees, can be used to identify determinants of extinction as well as to predict extinction risk. To understand which factors led to the end-Permian mass extinction during an extreme global warming event, we quantified the ecological selectivity of marine extinctions in the well-studied South China region. We find that extinction selectivity varies between different groups of organisms and that a synergy of multiple environmental stressors best explains the overall end-Permian extinction selectivity pattern. Extinction risk was greater for genera that had a low species richness, narrow bathymetric ranges limited to deep-water habitats, a stationary mode of life, a siliceous skeleton, or, less critically, calcitic skeletons. These selective losses directly link the extinctions to the environmental effects of rapid injections of carbon dioxide into the ocean–atmosphere system, specifically the combined effects of expanded oxygen minimum zones, rapid warming, and potentially ocean acidification.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

Reference58 articles.

1. Do Bony Orbit Dimensions Predict Diel Activity Pattern in Sciurid Rodents?

2. Evaluating the predicted extinction risk of living amphibian species with the fossil record

3. Greedy function approximation: A gradient boosting machine.

4. Prokhorenkova, L. , Gusev, G. , Vorobev, A. , Dorogush, A. V. , and Gulin, A. . 2018. CatBoost: unbiased boosting with categorical features. Pp. 6639–6649 in Proceedings of the 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

5. General models of ecological diversification. II. Simulations and empirical applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3