CONFOCAL MICROSCOPY APPLIED TO PALEONTOLOGICAL SPECIMENS

Author:

Ball Alexander D.,Goral Tomasz,Kamanli Seyit A.

Abstract

AbstractConfocal laser scanning microscopy is a well-established optical technique allowing for three-dimensional (3-D) visualization of fluorescent specimens with a resolution close to the diffraction limit of light. Thanks to the availability of a wide range of fluorescent dyes and selective staining using antibodies, the technique is commonly used in life sciences as a powerful tool for studying different biological processes, often at the level of single molecules. However, this type of approach is often not applicable for specimens that are preserved in historical slide collections, embedded in amber, or are fossilized, and cannot be exposed to any form of selective staining or other form of destructive treatment. This usually narrows the number of microscopic techniques that can be used to study such specimens to traditional light microscopy or scanning electron microscopy. However, these techniques have their own limitations and cannot fully reveal 3-D structures within such barely accessible samples. Can confocal microscopy be of any help? The answer is positive, and it is due to the fact that many paleontological specimens exhibit a strong inherent autofluorescence that can serve as an excellent source of emitted photons for confocal microscopy visualizations either through reconstruction of the induced autoflourescent signal from the sample, or through reconstruction of the reflected signal from the sample surface. Here, we describe the workflow and methodology involved in acquiring confocal data from a sample and reprocessing the resulting image stack using the image-processing program imageJ before reconstructing the data using the open-source 3-D rendering program, Drishti. This approach opens new possibilities for using confocal microscopy in a nondestructive manner for visualizing complex paleontological material that has never previously been considered as suitable for this type of microscopic technique.

Publisher

Cambridge University Press (CUP)

Reference20 articles.

1. Fiji: an open-source platform for biological-image analysis

2. Optical Projection Tomography as a Tool for 3D Microscopy and Gene Expression Studies

3. Optical Tomography

4. Morphological analysis and description of Middle Jurassic dinoflagellate cyst marker species using confocal laser scanning microscopy, digital optical microscopy and conventional light microscopy;Feist-Burkhardt;Bulletin du Centre de Recherché Elf Exploration Production,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3