Linear algebra software for large-scale accelerated multicore computing

Author:

Abdelfattah A.,Anzt H.,Dongarra J.,Gates M.,Haidar A.,Kurzak J.,Luszczek P.,Tomov S.,Yamazaki I.,YarKhan A.

Abstract

Many crucial scientific computing applications, ranging from national security to medical advances, rely on high-performance linear algebra algorithms and technologies, underscoring their importance and broad impact. Here we present the state-of-the-art design and implementation practices for the acceleration of the predominant linear algebra algorithms on large-scale accelerated multicore systems. Examples are given with fundamental dense linear algebra algorithms – from the LU, QR, Cholesky, and LDLT factorizations needed for solving linear systems of equations, to eigenvalue and singular value decomposition (SVD) problems. The implementations presented are readily available via the open-source PLASMA and MAGMA libraries, which represent the next generation modernization of the popular LAPACK library for accelerated multicore systems.To generate the extreme level of parallelism needed for the efficient use of these systems, algorithms of interest are redesigned and then split into well-chosen computational tasks. The task execution is scheduled over the computational components of a hybrid system of multicore CPUs with GPU accelerators and/or Xeon Phi coprocessors, using either static scheduling or light-weight runtime systems. The use of light-weight runtime systems keeps scheduling overheads low, similar to static scheduling, while enabling the expression of parallelism through sequential-like code. This simplifies the development effort and allows exploration of the unique strengths of the various hardware components. Finally, we emphasize the development of innovative linear algebra algorithms using three technologies – mixed precision arithmetic, batched operations, and asynchronous iterations – that are currently of high interest for accelerated multicore systems.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics,Numerical Analysis

Reference185 articles.

1. Two-Stage Tridiagonal Reduction for Dense Symmetric Matrices Using Tile Algorithms on Multicore Architectures

2. A comparative study of sparse approximate inverse preconditioners;Tuma;Appl. Numer. Math,1998

3. S. N. Yeralan , T. A. Davis  and S. Ranka (2013), Sparse multifrontal QR on the GPU. Technical report, University of Florida.

4. A Parallel Tiled Solver for Dense Symmetric Indefinite Systems on Multicore Architectures

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implementation of Mixed Precision Sparse Matrix Solving in the Large Scale Circuit Transient Simulation;2024 2nd International Symposium of Electronics Design Automation (ISEDA);2024-05-10

2. Convergence Analysis of a Mixed Precision Parareal Algorithm;SIAM Journal on Scientific Computing;2023-09-22

3. Mixed Precision Iterative Refinement with Sparse Approximate Inverse Preconditioning;SIAM Journal on Scientific Computing;2023-06-09

4. Vectorization of a Thread-Parallel Jacobi Singular Value Decomposition Method;SIAM Journal on Scientific Computing;2023-06-02

5. Using Ginkgo's memory accessor for improving the accuracy of memory‐bound low precision BLAS;Software: Practice and Experience;2021-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3