Filters, mollifiers and the computation of the Gibbs phenomenon

Author:

Tadmor Eitan

Abstract

We are concerned here with processing discontinuous functions from their spectral information. We focus on two main aspects of processing such piecewise smooth data: detecting the edges of a piecewise smooth f, namely, the location and amplitudes of its discontinuities; and recovering with high accuracy the underlying function in between those edges. If f is a smooth function, say analytic, then classical Fourier projections recover f with exponential accuracy. However, if f contains one or more discontinuities, its global Fourier projections produce spurious Gibbs oscillations which spread throughout the smooth regions, enforcing local loss of resolution and global loss of accuracy. Our aim in the computation of the Gibbs phenomenon is to detect edges and to reconstruct piecewise smooth functions, while regaining the high accuracy encoded in the spectral data.To detect edges, we utilize a general family of edge detectors based on concentration kernels. Each kernel forms an approximate derivative of the delta function, which detects edges by separation of scales. We show how such kernels can be adapted to detect edges with one- and two-dimensional discrete data, with noisy data, and with incomplete spectral information. The main feature is concentration kernels which enable us to convert global spectral moments into local information in physical space. To reconstruct f with high accuracy we discuss novel families of mollifiers and filters. The main feature here is making these mollifiers and filters adapted to the local region of smoothness while increasing their accuracy together with the dimension of the data. These mollifiers and filters form approximate delta functions which are properly parametrized to recover f with (root-) exponential accuracy.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics,Numerical Analysis

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3