Adaptivity with moving grids

Author:

Budd Chris J.,Huang Weizhang,Russell Robert D.

Abstract

In this article we survey r-adaptive (or moving grid) methods for solving time-dependent partial differential equations (PDEs). Although these methods have received much less attention than their h- and p-adaptive counterparts, particularly within the finite element community, we review the substantial progress that has been made in developing more robust and reliable algorithms and in understanding the basic principles behind these methods, and we give some numerical examples illustrative of the wide classes of problems for which these methods are suitable alternatives to the traditional ones.More specifically, we first examine the basic geometric properties of moving meshes in both one and higher spatial dimensions, and discuss the discretization process for PDEs on such moving meshes (both structured and unstructured). In particular, we consider the issues of mesh regularity, equidistribution, alignment, and associated variational methods. An overview is given of the general interpolation error analysis for a function or a truncation error on such an adaptive mesh. Guided by these principles, we show how to design effective moving mesh strategies. We then examine in more detail how these strategies can be implemented in practice. The first class of methods which we consider are based upon controlling mesh density and hence are called position-based methods. These make use of a so-called moving mesh PDE (MMPDE) approach and variational methods, as well as optimal transport methods. This is followed by an analysis of methods which have a more Lagrange-like interpretation, and due to this focus are called velocity-based methods. These include the moving finite element method (MFE), the geometric conservation law (GCL) methods, and the deformation map method. Finally, we present a number of specific types of examples for which the use of a moving mesh method is particularly effective in applications. These include scale-invariant problems, blow-up problems, problems with moving fronts and problems in meteorology. We conclude that, whilst r-adaptive methods are still in their relatively early stages of development, with many outstanding questions remaining, they have enormous potential and indeed can produce an optimal form of adaptivity for many problems.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics,Numerical Analysis

Cited by 200 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3