Numerical methods with controlled dissipation for small-scale dependent shocks

Author:

LeFloch Philippe G.,Mishra Siddhartha

Abstract

We provide a ‘user guide’ to the literature of the past twenty years concerning the modelling and approximation of discontinuous solutions to nonlinear hyperbolic systems that admitsmall-scale dependentshock waves. We cover several classes of problems and solutions: nonclassical undercompressive shocks, hyperbolic systems in nonconservative form, and boundary layer problems. We review the relevant models arising in continuum physics and describe the numerical methods that have been proposed to capture small-scale dependent solutions. In agreement with general well-posedness theory, small-scale dependent solutions are characterized by akinetic relation, a family of paths, or anadmissible boundary set. We provide a review of numerical methods (front-tracking schemes, finite difference schemes, finite volume schemes), which, at the discrete level, reproduce the effect of the physically meaningful dissipation mechanisms of interest in the applications. An essential role is played by theequivalent equationassociated with discrete schemes, which is found to be relevant even for solutions containing shock waves.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics,Numerical Analysis

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3