Wavelet and multiscale methods for operator equations

Author:

Dahmen Wolfgang

Abstract

More than anything else, the increase of computing power seems to stimulate the greed for tackling ever larger problems involving large-scale numerical simulation. As a consequence, the need for understanding something like theintrinsic complexityof a problem occupies a more and more pivotal position. Moreover, computability often only becomes feasible if an algorithm can be found that isasymptotically optimal. This means that storage and the number of floating point operations needed to resolve the problem with desired accuracy remainproportionalto the problem size when the resolution of the discretization is refined. A significant reduction of complexity is indeed often possible, when the underlying problem admits a continuous model in terms of differential or integral equations. The physical phenomena behind such a model usually exhibit characteristic features over a wide range of scales. Accordingly, the most successful numerical schemes exploit in one way or another the interaction of different scales of discretization. A very prominent representative is themultigridmethodology; see, for instance, Hackbusch (1985) and Bramble (1993). In a way it has caused a breakthrough in numerical analysis since, in an important range of cases, it does indeed provide asymptotically optimal schemes. For closely related multilevel techniques and a unified treatment of several variants, such asmultiplicativeoradditive subspace correctionmethods, see Bramble, Pasciak and Xu (1990), Oswald (1994), Xu (1992), and Yserentant (1993). Although there remain many unresolved problems, multigrid or multilevel schemes in the classical framework of finite difference and finite element discretizations exhibit by now a comparatively clear profile. They are particularly powerful for elliptic and parabolic problems.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics,Numerical Analysis

Cited by 356 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3