Cyclic multicategories, multivariable adjunctions and mates

Author:

Cheng Eugenia,Gurski Nick,Riehl Emily

Abstract

AbstractA multivariable adjunction is the generalisation of the notion of a 2-variable adjunction, the classical example being the hom/tensor/cotensor trio of functors, ton+ 1 functors ofnvariables. In the presence of multivariable adjunctions, natural transformations between certain composites built from multivariable functors have “dual” forms. We refer to corresponding natural transformations as multivariable or parametrised mates, generalising the mates correspondence for ordinary adjunctions, which enables one to pass between natural transformations involving left adjoints to those involving right adjoints. A central problem is how to express the naturality (or functoriality) of the parametrised mates, giving a precise characterization of the dualities so-encoded.We present the notion of “cyclic double multicategory” as a structure in which to organise multivariable adjunctions and mates. While the standard mates correspondence is described using an isomorphism of double categories, the multivariable version requires the framework of “double multicategories”. Moreover, we show that the analogous isomorphisms of double multicategories give a cyclic action on the multimaps, yielding the notion of “cyclic double multicategory”. The work is motivated by and applied to Riehl's approach to algebraic monoidal model categories.

Publisher

Cambridge University Press (CUP)

Subject

Geometry and Topology,Algebra and Number Theory

Reference26 articles.

1. Understanding the Small Object Argument

2. A Quillen Model Structure for Bicategories

3. Batanin M.A. and Berger C. . The lattice path operad and Hochschild cochains, 2009.

4. Eilenberg S. and Kelly G. M. Closed categories. 1966 Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965), 421–562.

5. Higher Operads, Higher Categories

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A compositional account of motifs, mechanisms, and dynamics in biochemical regulatory networks;Compositionality;2024-05-13

2. Segal conditions for generalized operads;Contemporary Mathematics;2024

3. Dwyer–Kan homotopy theory for cyclic operads;Proceedings of the Edinburgh Mathematical Society;2021-01-14

4. Proofs and surfaces;Annals of Pure and Applied Logic;2020-10

5. Modular operads and the nerve theorem;Advances in Mathematics;2020-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3