Author:
Dawood Asadullah,Bashir Shazia,Chishti Naveed Ahmed,Khan Muhammad Asad,Hayat Asma
Abstract
AbstractThe effect of magnetic field on the plasma parameters and surface modification of Cu-alloy has been investigated. For this purpose, we have employed Nd: YAG laser at various irradiances ranging from 1.9 to 5 GW/cm2 to irradiate Cu-alloy under 5 torr pressure of argon, neon, and helium. The evaluated values of excitation temperature (Texc) and electron number density (ne) of Cu-alloy plasma explored by laser-induced breakdown spectroscopy technique are higher in the presence of 1.1 Tesla magnetic field as compared with field-free case. It is true at all irradiances as well as under all environmental conditions. It is also found that trends of both Texc and ne are increasing with increasing laser irradiance from 1.9 to 4.4 GW/cm2. For the highest used irradiance 5 GW/cm2, the decrease in both parameters is observed. The analytically calculated values of thermal beta, directional beta, confinement radius, and diffusion time for laser-irradiated Cu-alloy plasma confirm the validity of magnetic confinement. Scanning electron microscope analysis is utilized to study the surface modifications of laser-irradiated Cu samples and reveals the formation of islands, craters, cones, and droplets. The finer-scale surface structures are grown in case of magnetic. It is also revealed Texc and ne play a substantial part in the growth of surface structures on Cu-alloy.
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献