Development of laser-plasma generator for injector of C4+ ions

Author:

Alekseev N.N.,Balabaev A.N.,Vasilyev A.A.,Satov Yu.A.,Savin S.M.,Sharkov B.Yu.,Shumshurov A.V.,Roerich V.C.

Abstract

AbstractThe results of the development of the ITEP accelerator carbon ion injector based on a repetition-rate CO2 laser ion source are described. The improvement includes a modified pulsed HV-feeding generator for the discharge formation in the laser gas mixture. The advanced discharge module ensures essential increase of the laser active volume and specific electrical deposition energy. The comparative computer simulations of the discharge characteristics for the improved and the prototype lasers are applied. The design and the output spatial-temporal parameters of the free-running laser “Malish-M” are shown, so the significant increase of the laser power is reached. The spatial characteristics of the laser beam obtained with diffraction calculations are compared to measured radial distribution of the energy density. The target laser intensity and the different channels of the energy loss of the laser beam in the optical scheme are estimated. Finally, the output C4+ current trace of heavy ion injector as well as the injector scheme are shown.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Influence of Metal Grids on the Ion-Beam Characteristics in a Laser-Plasma Source;Instruments and Experimental Techniques;2022-02

2. Submicrosecond electron accelerator based on pulsed transformer;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2020-07

3. Ion charge state and energy enhancement by axial magnetic field applied during laser produced plasma expansion;Laser and Particle Beams;2016-09-09

4. Characteristics of a pulse–periodic CO2 laser for applications in the field of laser-produced plasma;Instruments and Experimental Techniques;2016-05

5. Multiply charged ion emission from laser produced tungsten plasma;Laser and Particle Beams;2012-10-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3