Feasibility study of the magnetic beam self-focusing phenomenon in a stack of conducting foils: Application to TNSA proton beams

Author:

Ni P.A.,Logan B.G.,Lund S.M.,Alexander N.,Bieniosek F.M.,Cohen R.H.,Roth M.,Schaumann G.

Abstract

AbstractThis paper investigates prospects of utilizing a high-power laser-driven target-normal-sheath-acceleration proton beam for the experimental demonstration of the magnetic self-focusing phenomenon in charged particle beams. In the proposed concept, focusing is achieved by propagating a space-charge dominated ion beam through a stack of thin conducting and grounded foils separated by vacuum gaps. As the beam travels through the system, image charges build up at the foils and generate electric field that counteracts the beam's electrostatic self-field — a dominant force responsible for expansion of a high current beam. Once the electrostatic self-field is “neutralized” by the image charges, the beam currents magnetic self-field will do the focusing. The focal spot size and focal length depends on the choice of a number of foils and distance between foils. Considering the typical electrical current level of a target-normal-sheath-acceleration proton beam, we conclude that it is feasible to focus or collimate a beam within tens of millimeters distance, e.g., using 200–1000 Al foils, 0.5 µm thick each, with foil spacing ranging from 25 µm to 100 µm. These requirements are within technical capabilities of modern target fabrication, thus allowing the first possible demonstration of the pinch effect with heavy ion beams.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Reference28 articles.

1. SRIM. (2012). The stopping and range of ions in matter. www.srim.org.

2. Fast Ignition by Intense Laser-Accelerated Proton Beams

3. Collective Ion Acceleration

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3