End-to-end simulation: The front end

Author:

HABER I.,BIENIOSEK F.M.,CELATA C.M.,FRIEDMAN A.,GROTE D.P.,HENESTROZA E.,VAY J.-L.,BERNAL S.,KISHEK R.A.,O'SHEA P.G.,REISER M.,HERRMANNSFELDT W.B.

Abstract

For the intense beams in heavy ion fusion accelerators, details of the beam distribution as it emerges from the source region can determine the beam behavior well downstream. This occurs because collective space-charge modes excited as the beam is born remain undamped for many focusing periods. Traditional studies of the source region in particle beam systems have emphasized the behavior of averaged beam characteristics, such as total current, rms beam size, or emittance, rather than the details of the full beam distribution function that are necessary to predict the excitation of the collective modes. Simulations of the beam in the source region and comparisons to experimental measurements at Lawrence Berkeley National Laboratory and the University of Maryland are presented to illustrate some of the complexity in beam characteristics that has been uncovered as increased attention has been devoted to developing a detailed understanding of the source region. Also discussed are methods of using the simulations to infer characteristics of the beam distribution that can be difficult to measure directly.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. References;Introduction to the Physics of Electron Emission;2017-10-31

2. Space charge and quantum effects on electron emission;Journal of Applied Physics;2012-03

3. Photoemission from metals and cesiated surfaces;Journal of Applied Physics;2007-10

4. Intense beam transport experiments in a multi-bend system at the University of Maryland Electron Ring;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2004-02

5. Mesh refinement for particle-in-cell plasma simulations: Applications to and benefits for heavy ion fusion;Laser and Particle Beams;2002-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3