Author:
Davidson Ronald C.,Uhm Han S.
Abstract
Use is made of the Vlasov–Maxwell equations to derive an eigenvalue equation describing the extraordinary–mode stability properties of relativistic, non-neutral electron flow in high-voltage diodes. The analysis is based on well-established theoretical techniques developed in basic studies of the kinetic equilibrium and stability properties of nonneutral plasmas characterized by intense self fields. The formal eigenvalue equation is derived for extraordinary-mode flute perturbations in a planar diode. As a specific example, perturbations are considered about the choice of self-consistent Vlasov equilibrium , where . is the electron density at the cathode (x = 0), H is the energy, and Py is the canonical momentum in the Y-direction (the direction of the equilibrium electron flow). As a limiting case, the planar eigenvalue equation is further simplified for low-frequency long-wavelength perturbations with |ω − kvd, ≪ ωυ where and and ⋯c = eB0/mc, and B0ệz is the applied magnetic field in the vacuum region xb < x ≤ d. Here, the outer edge of the electron layer is located at x = xb; ω is complex oscillation frequency; k is the wavenumber in the y-direction; ωυ is the characteristic betatron frequency for oscillations in the x′-orbit about the equilibrium value x′ = x0 = xb/2; and Vd is the average electron flow velocity in the y-direction at x = x0. In simplifying the orbit integrals, a model is adopted in which the eigenfunction approximated by , where x′(t′) is the x′-orbit in the equilibrium field configuration. A detailed analysis of the resulting eigenvalue equation for , derived for low-frequency long-wavelength perturbations, is the subject of a companion paper.
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献