π phase-shift induced transparency of resonant gamma radiation

Author:

HOY G.R.,ODEURS J.,COUSSEMENT R.

Abstract

The so-called gamma-echo effect has been observed experimentally and analyzed using the semiclassical optical theory. Here the effect is reinterpreted using a new 1D quantum mechanical model. This leads to a different interpretation of the effect as a π phase-shift induced transparency. In the basic time-differential Mössbauer spectroscopic technique the forward-scattered recoil-free radiation is observed, in delayed coincidence, after passing through a nuclear-resonant absorber. The effect in question is produced most efficiently when the source of recoil-free radiation is moved abruptly causing a π phase shift of the source radiation during its radiative lifetime. Using the 1D model the effect is seen to arise from the constructive interference between the source radiation at a later time, and the radiation coming from the absorber excited at an earlier time. The exact form of the source modulation and the nuclear-resonant thickness of the resonant absorber determines the shape of the time-differential resonant gamma ray transmission spectrum. Numerical results are given using the familiar 57Fe recoil-free resonant transition. The π phase-shift-induced transparency allows the resonant gamma radiation, incident on the resonant absorber, to be transmitted through the absorber without appreciable attenuation.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. X-ray-driven gamma emission;Hyperfine Interactions;2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3