Overview of theory and modeling in the heavy ion fusion virtual national laboratory

Author:

DAVIDSON R.C.,KAGANOVICH I.D.,LEE W.W.,QIN H.,STARTSEV E.A.,TZENOV S.,FRIEDMAN A.,BARNARD J.J.,COHEN R.H.,GROTE D.P.,LUND S.M.,SHARP W.M.,CELATA C.M.,DE HOON M.,HENESTROZA E.,LEE E.P.,YU S.S.,VAY J.-L.,WELCH D.R.,ROSE D.V.,OLSON C.L.

Abstract

This article presents analytical and simulation studies of intense heavy ion beam propagation, including the injection, acceleration, transport and compression phases, and beam transport and focusing in background plasma in the target chamber. Analytical theory and simulations that support the High Current Experiment (HCX), the Neutralized Transport Experiment (NTX), and the advanced injector development program, are being used to provide a basic understanding of the nonlinear beam dynamics and collective processes, and to develop design concepts for the next-step Integrated Beam Experiment (IBX), an Integrated Research Experiment (IRE), and a heavy ion fusion driver. Three-dimensional nonlinear perturbative simulations have been applied to collective instabilities driven by beam temperature anisotropy, and to two-stream interactions between the beam ions and any unwanted background electrons; three-dimensional particle-in-cell simulations of the 2-MV electrostatic quadrupole (ESQ) injector have clarified the influence of pulse rise time; analytical studies and simulations of the drift compression process have been carried out; syntheses of a four-dimensional particle distribution function from phase-space projections have been developed; and studies of the generation and trapping of stray electrons in the beam self-fields have been performed. Particle-in-cell simulations, involving preformed plasma, are being used to study the influence of charge and current neutralization on the focusing of the ion beam in NTX and in a fusion chamber.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3