Effect of nature and pressure of ambient environments on the surface morphology, plasma parameters, hardness, and corrosion resistance of laser-irradiated Mg-alloy

Author:

Dawood Asadullah,Bashir Shazia,Akram Mahreen,Hayat Asma,Ahmed Sajjad,Iqbal Muhammad Hassan,Kazmi Ali Hassan

Abstract

AbstractThe influence of nature and pressure of ambient environment on the surface modification, plasma parameters, hardness, and corrosion resistance of Mg-alloy has been investigated. Nd: YAG laser (1064 nm, 10 ns, 25 mJ) at a fluence of 1.3 J cm−2 has been employed as an irradiation source. Targets of Mg-alloy were exposed in the ambient environments of argon (Ar), neon (Ne), and helium (He) at pressures ranging from 5 to 760 Torr. Scanning electron microscope has been employed to investigate the surface morphology of the irradiated targets. It reveals the formation of cavities, cones, droplets, ripples, and islands on the surface of the irradiated sample. Laser-induced breakdown spectroscopy technique was employed to measure electron temperature (Te) and electron number density (Ne) of Mg-alloy. The value of electron temperature ranges from 6628 to 12,855 K, whereas the value of electron number density varies from 5.4 × 1017 to 19.2 × 1017 cm−3. The maximum Te and Ne are observed in Ar and minimum in case of He. It was also revealed that both the surface morphology and plasma parameters are strongly dependent upon nature and pressure of environmental gases. The maxima of Te is achieved at a pressure of 10 Torr for all the three ambient environments that is, Ar, Ne, and He; whereas maxima of Ne is achieved at different pressures, that is, at 760 Torr for Ar, at 200 Torr for Ne, and at 50 Torr for He. The hardness and corrosion resistance of irradiated Mg-alloy have been explored using Vickers Micro-hardness tester and Potentio-dynamic polarization technique, respectively. It was investigated that as compared with un-irradiated target, the hardness as well as corrosion resistance of the laser-irradiated target has been increased significantly in all environments. Plasma parameters, mechanical, and electrical properties of laser-irradiated Mg-alloy have been correlated with induced surface modifications and are strongly influenced by environmental conditions.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3